

GACE[®] Mathematics Assessment Test II (023) Curriculum Crosswalk

Subarea I. Functions (40%)								
<i>Objective 1: Understands how to interpret functions and apply knowledge to build functions</i>								
A. Understands the function concept and the use of function notation								
• Understands that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range								
 Uses function notation, evaluates functions, and interprets statements that use function notation in terms of a context 								
 Recognizes that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers 								
 Determines the domain and range of a function from a function rule (e.g., f(x) = 2x + 1), graph, set of ordered pairs, or table 								
 B. Understands how function behavior is analyzed using different representations; e.g., graphs, mappings, tables 								
 For a function that models a relationship between two quantities, interprets key features of graphs and tables (e.g., increasing/decreasing, maximum/minimum, periodicity) in terms of the quantities 								

• Given a verbal description of a relation, sketches graphs that show key features of that relation								
 Graphs functions (i.e., radical, piecewise, absolute value, polynomial, rational, logarithmic, trigonometric) expressed symbolically, and identifies key features of the graph 								
 Writes a function that is defined by an expression in different but equivalent forms to reveal different properties of the function e.g., zeros, extreme values, symmetry of the graph 	;							
 Interprets the behavior of exponential functions; e.g., growth, decay 								
• Understands how to determine if a function is odd, even, or neither, and any resulting symmetries								
C. Understands how functions and relations are used to model relationships between quantities								
Writes a function that relates two quantities								
 Determines an explicit expression or a recursive process that builds a function from a context 	1							
D. Understands how new functions are obtained from existing functions; e.g., compositions, transformations, inverses								
 Describes how the graph of g(x) is related to the graph of f(x), where g(x) = f(x) + k, g(x) = k f(x), g(x) = f(kx), or g(x) = f(x + k) for specific values of k (both positive and negative), and finds the value of k given the graphs 								

 Determines if a function has an inverse and writes an expression for the inverse 							
 Verifies by composition if one function is the inverse of another 							
 Given that a function <i>f</i> has an inverse, finds values of the inverse function from a graph or a table of <i>f</i> 							
• Given a noninvertible function, determines the largest possible domain of the function that produces an invertible function							
 Understands the inverse relationship between exponential and logarithmic functions, and uses this relationship to solve problems 							
Combines standard function types using arithmetic operations							
 Performs domain analysis on functions resulting from arithmetic operations 							
 Composes functions algebraically, numerically, and graphically 							
 Performs domain analysis on functions resulting from compositions 							
<i>Objective 2: Understands and applies knowledge of linear, quadratic, and exponential models and trigonometric functions</i>							
 A. Understands differences between linear, quadratic, and exponential models, including how their equations are created and used to solve problems 							

 Understands that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals 							
 Recognizes situations in which one quantity changes at a constant rate per unit interval relative to another 							
 Recognizes situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another 							
 Constructs linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two ordered pairs (including reading these from a table) 							
 Observes that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function 							
 Expresses the solution to an exponential equation with base b as a logarithm; e.g., 3 • 2^{5t} = 20, 3 • e^{5t} = 20 							
 Uses technology to evaluate logarithms that have any base 							
• Interprets the parameters in a linear or exponential function in terms of a context; e.g., $A(t) = Pe^{rt}$							
Uses quantities that are inversely related to model phenomena							

 B. Understands how to construct the unit circle and how to use it to find values of trigonometric functions for all angle measures in their domains 							
Finds the values of trigonometric functions of any angle							
Uses the unit circle to explain symmetry and periodicity of trigonometric functions							
C. Understands how periodic phenomena are modeled using trigonometric functions							
 Chooses trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline 							
Understands how to restrict the domain of a trigonometric function so that its inverse can be constructed							
 Uses inverse functions to solve trigonometric equations that arise in modeling contexts, and interprets them in terms of the context 							
D. Understands the application of trigonometric identities (e.g., Pythagorean, double angle, half angle, sum of angles, difference of angles)							
• Proves Pythagorean identities (e.g., $\sin^2 \theta$ + $\cos^2 \theta = 1$) and uses them to solve problems							
Uses trigonometric identities to rewrite expressions and solve equations							

• Understands trigonometric identities in the context of equivalent graphs of trigonometric functions; e.g., $y = \sin x$ and $y = \cos\left(\frac{\pi}{2} - x\right)$ are equivalent graphs							
E. Knows how to interpret representations of functions of two variables; e.g., three- dimensional graphs, tables							
 Interprets representations of functions of two variables; e.g., z = f (x, y) 							
F. Understands how to solve trigonometric, logarithmic, and exponential equations							
 Solves trigonometric, logarithmic, and exponential equations 							
Subarea II. Geometry (30%)							
<i>Objective 1: Understands congruence/ similarity/triangles/trigonometric ratios and equations for geometric properties</i>							
A. Understands transformations in a plane							
 Knows precise definitions of angle, circle, line segment, perpendicular lines, and parallel lines 							
Represents transformations in the plane							
 Recognizes whether a transformation preserves distance and angle measure 							
 Given a rectangle, parallelogram, trapezoid, or regular polygon, describes the rotations and reflections that map it onto itself 							

 Develops definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments 							
 Given a geometric figure and a rotation, reflection, or translation, draws the transformed figure 							
 Specifies a sequence of transformations that will map a given figure onto another figure 							
 B. Understands how to prove geometric theorems such as those about lines and angles, triangles, and parallelograms 							
Proves theorems about lines and angles							
Proves theorems about triangles							
Proves theorems about parallelograms							
C. Understands how geometric constructions are made with a variety of tools and methods							
Recognizes formal geometric constructions							
 Explains how formal geometric constructions are made; e.g., an equilateral triangle, a square, a regular hexagon inscribed in a circle 							
D. Understands congruence and similarity in terms of transformations							
 Uses geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure 							

 Verifies the properties of dilations given by a center and a scale factor 							
 Given two figures, uses the definition of congruence in terms of rigid motions to decide if they are congruent 							
 Given two figures, uses the definition of similarity in terms of dilations to decide if they are similar 							
 Explains how the criteria for triangle congruence (e.g., ASA, SAS, SSS, HL) follow from the definition of congruence in terms of rigid motions 							
 Uses the properties of similarity transformations to establish the AA criterion for two triangles to be similar 							
 Uses congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures 							
E. Understands how trigonometric ratios are defined in right triangles							
• Understands that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles							
• Explains and uses the relationship between the sine and cosine of complementary angles							
 Uses trigonometric ratios and the Pythagorean theorem to solve right triangles in applied problems 							

· · · · · · · · · · · · · · · · · · ·				 	 	 	
F. Understands how trigonometry is applied to general triangles							
• Uses the formula $A = \frac{1}{2}ab\sin(C)$ for the							
area of a triangle to solve problems							
 Applies the Law of Sines and the Law of Cosines to find unknown measurements in triangles 							
G. Knows how to translate between a geometric description (e.g., focus, asymptotes, directrix) and an equation for a conic section							
 Determines and uses the equation of a circle of given center and radius 							
 Finds the center and radius of a circle given by an equation in standard form 							
 Determines the equation of a parabola given a focus and directrix 							
 Determines and uses the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from a point on the curve to the foci is constant 							
 H. Understands how to use coordinate geometry to algebraically prove simple geometric theorems 							
 Uses coordinates to prove simple geometric theorems algebraically 							
 Proves the slope criteria for parallel and perpendicular lines, and uses parallel and perpendicular lines to solve geometric problems 							

• Finds the point on a directed line segment between two given points that partitions the segment in a given ratio							
 Uses coordinates to compute perimeters of polygons and areas of triangles and quadrilaterals 							
<i>Objective 2: Understands circles, geometric measurement and dimension, and modeling with geometry</i>							
A. Understands and applies theorems about circles							
 Identifies and describes relationships among inscribed angles, radii, and chords 							
 Proves properties of angles for a quadrilateral inscribed in a circle 							
 Constructs a tangent line from a point outside a given circle to the circle 							
B. Understands arc length and area measurements of sectors of circles							
 Uses the length of the arc intercepted by a central angle or inscribed angle to solve circumference problems 							
 Uses the formula for the area of a sector to solve problems 							
C. Understands how perimeter, area, surface area, and volume formulas are used to solve problems							
 Uses the perimeter and area of geometric shapes to solve problems 							
 Uses the surface area and volume of prisms, cylinders, pyramids, cones, and spheres to solve problems 							

		-					
 Solves problems that involve medians, midpoints, and altitudes 							
 Solves problems involving special triangles; e.g., isosceles, equilateral, right 							
 Knows geometric properties of and relationships among quadrilaterals; e.g., parallelograms, trapezoids 							
 Solves problems involving angles and diagonals 							
 Solves problems involving polygons with more than four sides 							
Subarea III. Probability and Statistics (30%)							
<i>Objective 1: Understands how to interpret categorical and quantitative data, make inferences, and justify conclusions</i>							
 A. Understands how to summarize, represent, and interpret data collected from measurements on a single variable; e.g., box plots, dot plots, normal distributions 							
 Represents data with plots on the real number line; e.g., dot plots, histograms, and box plots 							
 Uses statistics appropriate to the shape of the data distribution to compare center (e.g., median, mean) and spread (e.g., interquartile range, standard deviation) of two or more different data sets 							
• Interprets differences in shape, center, and spread in the context of the data sets, accounting for possible effects of outliers							

 Uses the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages, and recognizes that there are data sets for which such a procedure is not appropriate 								
 B. Understands how to summarize, represent, and interpret data collected from measurements on two variables, either categorical or quantitative; e.g., scatterplots, time series 								
 Summarizes and interprets categorical data for two categories in two-way frequency tables; e.g., joint, marginal, conditional relative frequencies 								
 Recognizes possible associations and trends in the data 								
 Represents data for two quantitative variables on a scatterplot, and describes how the variables are related 								
C. Understands how to create and interpret linear regression models; e.g., rate of change, intercepts, correlation coefficient								
 Uses technology to fit a function to data (i.e., linear regression) and determines a linear correlation coefficient 								
 Uses functions fitted to data to solve problems in the context of the data 								
 Assesses the fit of a function by plotting and analyzing residuals 								
 Interprets the slope and the intercept of a regression line in the context of the data 								
Interprets a linear correlation coefficient								

 Distinguishes between correlation and causation 							
D. Understands statistical processes and how to evaluate them							
 Understands statistics as a process for making inferences about population parameters based on a random sample from that population 							
 Decides if a specified model is consistent with results from a given data-generating process; e.g., using simulation 							
E. Understands how to make inferences and justify conclusions from samples, experiments, and observational studies							
 Recognizes the purposes of and differences among sample surveys, experiments, and observational studies, and explains how randomization relates to each 							
 Uses data from a sample survey to estimate a population mean or proportion 							
Uses data from a randomized experiment to compare two treatments							
 Uses results of simulations to decide if differences between parameters are significant 							
Evaluates reports based on data							
<i>Objective 2: Understands conditional probability, the rules of probability, and using probability to make decisions</i>							

	 	 	1	1		 	· · ·	
A. Understands the concepts of independence and conditional probability and how to apply these concepts to data								
 Describes events as subsets of a sample space using characteristics of the outcomes, or as unions, intersections, or complements of other events 								
• Understands that two events, A and B, are independent if and only if $P(A \cap B) = P(A) \cdot P(B)$								
• Understands the conditional probability of <i>A</i> given <i>B</i> as $\frac{P(A \text{ and } B)}{P(B)}$, and interprets independence of <i>A</i> and <i>B</i> as saying that P(A B) = P(A) and								
 B. Understands how to compute probabilities of simple events, probabilities of compound events, and conditional probabilities 								
 Calculates probabilities of simple and compound events 								
 Constructs and interprets two-way frequency tables of data when two categories are associated with each object being classified; uses the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities 								
• Finds $P(A B)$, and interprets it in terms of a given model								

 Applies the addition rule, P(A or B) = P(A) + P(B) - P(A and B), and interprets it in terms of a given model 							
• Applies the general multiplication rule in a uniform probability model, P(A and B) = P(A)P(B A) = P(B)P(A B),							
and interprets it in terms of a given model							
 Calculates probabilities using the binomial probability distribution 							
C. Knows how to make informed decisions using probabilities and expected values							
• Defines a random variable for a quantity of interest by assigning a numerical value to each event in a sample space, and graphs the corresponding probability distribution using the same graphical displays as for data distributions							
 Calculates the expected value of a random variable, and interprets it as the mean of the probability distribution 							
 Develops a probability distribution for a random variable, defined for a sample space in which theoretical probabilities can be calculated, and finds the expected value 							
 Develops a probability distribution for a random variable, defined for a sample space in which probabilities are assigned empirically, and finds the expected value 							
 Weighs the possible outcomes of a decision by assigning probabilities to payoff values and finding expected values 							

 Analyzes decisions and strategies using probability concepts; e.g., fairness 							
D. Understands how to use simulations to construct experimental probability distributions and to make informal inferences about theoretical probability distributions							
Given the results of simulations, constructs experimental probability distributions							
 Given the results of simulations, makes informal inferences about theoretical probability distributions 							
E. Understands how to find probabilities involving finite sample spaces and independent trials							
 Uses the fundamental counting principle to find probabilities involving finite sample spaces and independent trials 							